Inhibition of mTOR reduces lipotoxic cell death in primary macrophages through an autophagy-independent mechanism.
نویسندگان
چکیده
Macrophage dysfunction in obesity and diabetes is associated with persistent inflammation and poor wound healing responses. Relevant to these phenotypes, we have previously shown that macrophage activation in a high-fat environment results in cell death via a mechanism that involves lysosome damage. While searching for signaling pathways that were required for this response, we discovered that mTOR inhibitors, torin and rapamycin, were protective against lipotoxic cell death in primary peritoneal macrophages. The protective effect of mTOR inhibition was also confirmed by using genetic loss-of-function approaches. Given the importance of mTOR in regulation of autophagy we hypothesized that this pathway would be important in protection from cell death. We first demonstrated that autophagy was disrupted in response to palmitate and LPS as a consequence of impaired lysosome function. Conversely, the mTOR inhibitor, torin, increased macrophage autophagy and protected against lysosome damage; however, the beneficial effects of torin persisted in autophagy-deficient cells. Inhibition of mTOR also triggered nuclear localization of TFEB, a transcription factor that regulates lysosome biogenesis and function, but the rescue phenotype did not require the presence of TFEB. Instead, we demonstrated that mTOR inhibition reduces mitochondrial oxidative metabolism and attenuates the negative effects of palmitate on LPS-induced mitochondrial respiration. These results suggest that inhibition of mTOR is protective against lipotoxicity via an autophagy-independent mechanism that involves relieving mitochondrial substrate overload. On the basis of these findings, we suggest that therapies to reduce macrophage mTOR activation may protect against dysfunctional inflammation in states of overnutrition, such as diabetes.
منابع مشابه
Selective clearance of macrophages in atherosclerotic plaques by autophagy.
OBJECTIVES The purpose of this study was to investigate whether stent-based delivery of an inhibitor of mammalian target of rapamycin (mTOR) can selectively clear macrophages in rabbit atherosclerotic plaques. BACKGROUND Current pharmacologic approaches to stabilize atherosclerotic plaques have only partially reduced the incidence of acute coronary syndromes and sudden death. Macrophages play...
متن کاملP162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases
Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...
متن کاملCoordinate Autophagy and mTOR Pathway Inhibition Enhances Cell Death in Melanoma
The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway promotes melanoma tumor growth and survival while suppressing autophagy, a catabolic process through which cells collect and recycle cellular components to sustain energy homeostasis in starvation. Conversely, inhibitors of the PI3K/AKT/mTOR pathway, in particular the mTOR inhibitor temsirolimus (CCI-779...
متن کاملPivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy.
Autophagy is an essential cellular mechanism for cell homeostasis and survival by which damaged cellular proteins are sequestered in autophagosomal vesicles and cleared through lysosomal machinery. The autophagy pathway also plays an important role in immunity and inflammation via pathogen clearance mechanisms mediated by immune cells, including macrophages and neutrophils. In particular, recen...
متن کاملFisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells.
The mammalian target of rapamycin (mTOR) kinase is an important component of PTEN/PI3K/Akt signaling pathway, which is frequently deregulated in prostate cancer (CaP). Recent studies suggest that targeting PTEN/PI3K/Akt and mTOR signaling pathway could be an effective strategy for the treatment of hormone refractory CaP. Here, we show that the treatment of androgen-independent and PTEN-negative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of leukocyte biology
دوره 100 5 شماره
صفحات -
تاریخ انتشار 2016